Modelling Quality Indicator (yearly average)
mqi_year.Rd
Compute the MQI for yearly average model results.
Usage
mqi_year(
times,
obs,
pred,
beta = 2,
alpha = 0.2,
RV = 200,
U_RV = 0.24,
Np = 5.2,
Nnp = 5.5,
...
)
Arguments
- times
A numeric vector, data.frame or data.table representing the deadlines of
obs
andpred
vectors.- obs
A numeric vector, data.frame or data.table of observed data. It must be of the same length of
times
.- pred
A numeric vector, data.frame or data.table of predicted (model) data. It must be of the same length of
times
.- beta
An integer: in Fairmode it is arbitrarily set to 2. It determines the stringency of the Modelling Quality Objectice (MQO).
- alpha
Non-proportional fraction factor (0 <= a <= 1). Default value = 0.2 (for NO_2).
- RV
Reference value. Default value = 200 (for NO_2).
- U_RV
Standard measurement uncertainty around the RV. Default value = 0.24 (for NO_2).
- Np
Parameter to account for the compensation of errors. Default value = 5.2 (for NO_2).
- Nnp
Parameter to account for the compensation of errors. Default value = 5.5 (for NO_2).
- ...
Optional arguments passed to
timeAggregation
.
Details
The function computes the Modelling Quality Indicator (MQI) for yearly averaged pollutant concentrations according to the definition: MQI=|ˉO−ˉP|βU(ˉO) See Section 5.2.2 of Fairmode MQO Guidance V3.2 for further details and Annex I therein for parameter values for other pollutants.
Examples
library(lubridate)
#>
#> Attaching package: ‘lubridate’
#> The following objects are masked from ‘package:base’:
#>
#> date, intersect, setdiff, union
times <- seq(dmy_hm("1/1/2019 00:00"), dmy_hm("31/12/2019 23:00"), by = "1 hour")
x <- runif(1:8760) * 10
y <- runif(1:8760) * 10
mqi_year(times = times, obs = x, pred = y)
#> year mqi
#> <num> <num>
#> 1: 2019 0.003940269